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Abstract

Purpose – The purpose of this paper is to describe the development and employment of an
hp-adaptive finite element method (FEM) algorithm for solving heat transfer problems in partitioned
enclosures, which has attracted the attention of both experimental and theoretical researchers in recent
years.

Design/methodology/approach – In the hp-adaptive FEM algorithm presented here, both the element
size and the shape function order are dynamically controlled by an a posteriori error estimator based on the
L2 norm; a three-step adaptation strategy is used with a projection algorithm for the flow solver.

Findings – Simulation results are obtained for 2D and 3D natural convection within partitioned
enclosures. Results show refined and enriched elements that develop near the partition edges and side
walls of the enclosure, as expected. The heat transfer between the heated and cooled side walls is
reduced in the presence of a partial partition.

Research limitations/implications – The Rayleigh numbers were set to 105 in the 2D case and 103

in the 3D case. Efforts are underway to apply the hp-adaptive algorithm to partitioned enclosures at
much higher Rayleigh numbers, including comparison with available experimental data.

Practical implications – Heat transfer within partitioned enclosures occurs in many engineering
situations: heat transfer across thermo pane windows, solar collectors, fire spread and energy transfer
in rooms and buildings, cooling of nuclear reactors and heat exchanger design.

Originality/value – The hp-adaptive FEM algorithm is one of the best mesh-based algorithms for
improving solution quality, whilst maintaining computational efficiency. The method shows
considerable promise in solving a wide range of heat transfer problems including fluid flow.

Keywords Algorithms, Finite element analysis, Convection, Heat transfer

Paper type Research paper

Nomenclature
e ¼ error (difference between exact and

approximate values)
he ¼ characteristic element length
h ¼ element size
Ke ¼ streamline component of diffusion

tensor
Ni ¼ Galerkin weighting function
L ¼ characteristic dimension

mi ¼ diagonal element in lumped mass
matrix

Ni ¼ shape function
p ¼ pressure, shape function order
Pr ¼ Prandtl number
Ra ¼ Rayleigh number
Re ¼ Reynolds number
t ¼ time
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T ¼ temperature
Tc, Th ¼ reference cold and hot temperature
V ¼ velocity vector
Wi ¼ Petrov-Galerkin weighting function
x ¼ Coordinate vector (x, y, z)
a ¼ Thermal diffusivity
â ¼ Petrov-Galerkin weighting factor

b ¼ thermal expansion coefficient
g ¼ Petrov-Galerkin stability parameter
m ¼ dynamic viscosity
n ¼ kinematic viscosity for fluid
r ¼ density
s * ¼ continuous value obtained from

nodal averaging

Introduction
Natural convection within partitioned enclosures occurs in numerous engineering
applications, e.g. heat transfer across thermo pane windows, electronic devices cooling,
fire spread and energy transfer in rooms and buildings and heat exchanger design. The
subject area has been studied widely from both experimental and numerical
perspectives.

Chen et al. (1990) conducted experiments for 2D steady natural convection within
partially divided rectangular enclosures with and without an opening in the partition
plate. They noticed that an unopened partial obstruction would reduce the heat
transfer rate by 12-30 percent depending on the Rayleigh number, while the opening
had little effect on the velocity and temperature profiles of the bottom fluid layer.
Khalifa and Abdullah (1999) conducted experiments in 3D, and concluded that the
location of the opening and the aperture height ratio both have significant effects on
the heat transfer – only a limited effect of aperture width ratio was noticed. Khalifa
and Khudheyer (2001) later investigated the effects of 14 different configurations of
partitions on the natural convection heat transfer in enclosures.

In addition to various experimental studies, many others have undertaken
numerical investigations. Hanjalic et al. (1996) used an algebraic turbulent flux model
to obtain results for the mean flow and turbulence field as well as Nusselt numbers in
2D partitioned enclosures at high Rayleigh number (Ra ranges from 1010 to 1012) with
several combinations of boundary conditions. Yucel and Ozdem (2003) used a control
volume method with the SIMPLE algorithm to investigate the effect of Rayleigh
numbers, number of partitions and heights of partitions on the fluid structure and fluid
flow. It was observed that the mean Nusselt number increases with increasing
Rayleigh number and decreases with increasing number of partitions. Fu and Shieh
(1998) employed a penalty finite element method (FEM) for natural convection heat
transfer in a partially divided enclosure for Ra ¼ 104 and 105, and concluded that the
heat transfer coefficients were influenced by the baffle height and location. Acharya
and Jetli (1990) chose the control volume method with a SIMPLER algorithm to study
buoyancy driven heat transfer in a partially divided square box. They found that
thermal stratification between the divider and the cold wall played key roles. At lower
Rayleigh numbers, the flow was weak in the stratified region and a tendency for flow
separation behind the divider was noted. Most of the numerical simulations discussed
in the literature are primarily based on 2D geometries.

In an effort to more accurately simulate heat transfer effects in a partitioned
enclosure without requiring the use of excessively large meshes, a numerical algorithm
based on an hp-adaptive finite element strategy has been developed. In the hp-adaptive
FEM, both the mesh size and the shape function order are dynamically controlled by an
a posterior error estimator based on the L2 norm. The adaptation procedure follows
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a three-step strategy: first, an initial coarse mesh is constructed; second, the h-adaptive
refinement is applied to generate an intermediate mesh; third, a p-adaptive enrichment
is applied on the intermediate mesh to obtain the final enriched mesh. A discussion on
adaptive mesh generation for fluid flow along with advantages and disadvantages of
error indicators is given in Nithiarasu and Zienkiewicz (2000).

Wang and Pepper (2007) demonstrated the application of hp-adaptive FEM for
solving several heat transfer problems. A 2D partitioned enclosure was one of the
application cases examined in their study. In the current work, simulations are
conducted for 2D and 3D natural convection within partitioned enclosures for laminar
flow conditions in an effort to establish adaptive protocols. For the 2D case, different
height to length ratios of the partition are adopted. Rayleigh numbers of 105 and 103 are
achieved in 2D and 3D, respectively. Results are characterized by the development of
refined and enriched elements near partition edges and side walls, as expected. The
heat transfer between the heated and cooled side walls is also reduced in the presence
of a partial partition. Results are compared with data in the literature.

The finite element model
Steady state, incompressible laminar viscous flow is assumed with convective heat
transfer. Employing the Boussinesq approximation and utilizing the following
dimensionless variables, (non-dimensional terms are labeled with “ *”):

x* ¼
x

L
; V* ¼

V

a=L
; p* ¼

p

ra 2=L2
; T* ¼

T 2 Tc

Th 2 Tc
; t* ¼

t

L2=a
ð1Þ

with the Reynolds number (Re), Rayleigh number (Ra), Prandtl number (Pr) and Peclet
number (Pe) defined as:

Re ¼
rVL

m
; Ra ¼

gbðTh 2 TcÞL
3

an
; Pr ¼

n

a
; Pe ¼ Ra · Pr ð2Þ

The non-dimensional forms of the governing equations (dropping the asterisk) can be
written as:

Conservation of mass:

7 ·V ¼ 0 ð3Þ

Conservation of momentum:

›V

›t
þ V ·7V ¼ 27p þ Pr72Vþ Pr RaT ð4Þ

Conservation of energy:

›T

›t
þ V ·7T ¼ 72T ð5Þ

Bilinear quadrilateral elements are used for 2D computational domains and trilinear
hexahedral elements are used for 3D problems. The Galerkin weighted residual method
is used.
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The variables V, T are replaced using the trial functions:

Vðx; tÞ ¼
Xn

i¼1

NiðxÞViðtÞ ð6Þ

Tðx; tÞ ¼
Xn

i¼1

NiðxÞTiðtÞ ð7Þ

where x is the physical domain, t is time, i is the degree of freedom (DOF) index and n
is the number of DOFs.

A projection algorithm was chosen for the flow solver. The algorithm is based on
the Helmhotz-Hodge Decomposition Theorem and was employed by Ramaswamy et al.
(1992). The matrix equivalent forms for the FEM integral expressions of equations
(3)-(5) are straightforward and can be easily obtained. A projection method based on
the Helmholtz-Hodge Decomposition theorem is used for the flow solver. Detailed
descriptions of the integral formulations and solution procedure are discussed in Wang
and Pepper (2007). A Petrov-Galerkin scheme is used to weight the advection terms in
the governing equations. The altered weighting function skews the interpolation
function in the upwind direction so that the dispersion and added diffusion introduced
by the standard Galerkin formulation are minimized, i.e.:

Wi ¼ Ni þ
âhe

2jV j
½V ·7Ni� ð8Þ

â ¼ coth
g

2
2

2

g
ð9Þ

where â is the Petrov-Galerkin weighting factor, he is the characteristic element length
and g is the Petrov-Galerkin stability parameter. g takes on different values depending
on the specific case: for only fluid flow problems, g ¼ jV jheRe ; for fluid flow with
forced convection, g ¼ jV jheRe Pr ; for flow with natural convection, g ¼ jV jheRa Pr .

Mass lumping is used in order to obtain a fully explicit time marching scheme, i.e.:

½M �21 ¼
1

mi

ð10Þ

where mi is the diagonal element obtained from the sum of the row matrix values.

Adaptation methodologies
Adaptation rules
There are numerous adaptation rules. They are described in detail in various
references (Zienkiewicz and Zhu, 1987; Demkowicz et al., 1989; Nithiarasu and
Zienkiewicz, 2000; Demkowicz, 2006). However, there are two very important rules:
1-irregular mesh adaptation rule for h-adaptation; and minimum rule for p-adaptation.

In h-adaptation, the 1-irregular mesh adaptation rule must be followed, which is: an
element can be refined only if its neighbors are at the same or higher level (1-irregular
mesh) (note that the higher the level, the finer the mesh). By following this rule,
multiple constrained nodes (parent nodes themselves are constraint nodes) can be
avoided. Vertex nodes that lie in the interior of the big element edge, and the two
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mid-edge nodes lying on the small element edges are defined as constrained nodes
(Demkowicz, 2006). As an example, 2D h-adaptation procedure is shown in
Figure 1(a)-(c).

In p-adaptation the minimum rule must be followed, which is: the order for an edge
common between two elements must never exceed the orders of the neighboring
middle nodes. As an example, 2D p-adaptation procedure is demonstrated in
Figure 2(a)-(c).

The adaptation rules for both h- and p-adaptation must be followed when combined
in hp-adaptation. Constraints at the interface of elements supporting edge functions of
different order are employed to maintain continuity of the global basis function. The
DOF of those constraint nodes may be interpreted by certain linear combinations of
directional or mixed derivatives. Detailed discussions about the procedure on how to
handle such constraints can be found in Demkowicz et al. (1989).

Error estimator and adaptation strategy
The error estimator is important in the adaptation procedure. Owing to a poor error
estimator, meshes may be refined and enriched in smooth flow region rather than in
fast change flow region. There are many error estimators in the literature (Ainsworth
and Oden, 2000; Zienkiewicz and Zhu, 1987; Nithiarasu and Zienkiewicz, 2000; Bänsch
et al., 2002; Bartels and Cartsensen, 2002; Cartsensen and Bartels, 2002; Hetu and
Pelletier, 1992). The estimator developed by Zienkiewicz and Zhu (1987) is easy to
implement and provides reasonable accuracy. An extension of this error estimator is
utilized here based on the L2 norm. For example, the error in velocity can be written as:

keVk ¼

V

Z
eTVeVdV

0
B@

1
CA

1=2

ð11Þ

where eV ¼ V 2 Vhp (exact value – approximate value obtained from the FEM
solution) and superscript T denotes the transpose. All element errors can be defined as:

Figure 1.
Examples for h-
adaptation: (a) initial
mesh; (b) correct h-adapted
mesh; (c) incorrect
h-adapted mesh

1 2

3 4

2

3 4

1 2

3

(a) (b) (c)

Figure 2.
Examples for
p-adaptation: (a) initial
mesh; (b) correct p-adapted
mesh; (c) incorrect
p-adapted mesh

4th

4th
3rd 4th 4th

4th
4th 5th

4th

(a) (b) (c)
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kejk
2
¼
Xm
i¼1

kejk

2

i

ð12Þ

where m stands for the total number of elements and j can refer to velocity, pressure,
temperature, or stress.

The error index h ¼ hj, in the form of error percentage, can be defined as:

hj ¼
kejk

2

ks*k
2
þ kejk

2

 !1=2

£100 percent ð13Þ

where s* stands for exact solutions. Since exact solutions are generally not available, a
continuous solution obtained by projection or nodal averaging can be used (Zienkiewicz
and Zhu, 1987). In these types of processes, it is assumed that s * is interpolated by the
same function. The error indexh is used to guide the adaptation procedure. Temperature
is chosen as the key variable to control the adaptation procedure.

Various adaptation strategies can be found in the literature (several strategies are
discussed in Wang and Pepper, 2007). In this study, the hp-adaptation procedure is an
extension of the “three-step hp-adaptive strategy” developed by Oden and Demkowicz
(1991) and Oden et al. (1995). The error estimator is based on the element residual
method-an alternative L2 norm error estimator (based on temperature). Following the
format of equation (11), the estimator for temperature (or temperature gradient) can be
defined as:

keTk ¼

V

Z
eTTeTdV

0
B@

1
CA

1=2

ð14Þ

An acceptable solution is reached when global and local error conditions are met
(Oñate and Bugeda, 1994). A global error condition states that: global percentage error
should not be greater than a maximum specified percentage error, h # �hmax .
If h . �hmax , a new iteration is performed. The local error condition states that local
relative percentage error of any single element keTki should not be greater than the
averaged error �eavg among all the elements in the domain. For example, the average
element error associated with the temperature gradient can be defined as:

�eavg ¼ �hmax
ðk7T*k

2
þ keTk

2
Þ

m

" #1=2

ð15Þ

where m is the number of elements in the domain. A local element refinement indicator
is defined to decide if a local refinement for an element is needed:

ji ¼
keTki
�eavg

ð16Þ

when ji . 1, the element is refined; when ji , 1 the element is unrefined. In an
h-adaptive process, the new element size is calculated using:
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hnew ¼
hold

j
1=p
i

ð17Þ

In a p-adaptive process, the new shape function order is calculated by:

pnew ¼ poldj
1=p
i ð18Þ

A sequence of refinement steps is employed. Three consecutive hp-adapted meshes are
constructed for solving the system equations in order to reach a preset target error (for
all the simulation cases in this study, e # 1026): initial coarse mesh, the intermediate
h-adapted mesh, and the final hp-adapted mesh obtained by applying p-adaptive
enrichments on the intermediate mesh. The p-adaptation is undertaken when
computational error is close enough to the preset target error.

Numerical examples
The adaptive algorithm is first benchmarked for natural convection in square
enclosures without partitions for both 2D and 3D; additional benchmark results are
discussed in Wang and Pepper (2007). Results for natural convection within partitioned
enclosures are described subsequently for both 2D and 3D.

Natural convection in square enclosure
Two-dimensional natural convection within differentially heated enclosures has been
studied for over 40 years (de Vahl Davis and Kettleborough, 1965). Numerical results are
usually compared with benchmark data obtained by de Vahl Davis (1983) and others.
The enclosure is heated on the left and cooled on the right; the top and bottom walls are
insulated ð0 # x # L; 0 # y # LÞ. In this simulation, Ra ¼ 105 and Pr ¼ 0.71.

The final hp-adapted mesh is shown in Figure 3. The final mesh consists of 1,372
elements and 6,529 DOFs. The mesh has been automatically refined and enriched
within the boundary layers along the walls of the enclosure.

Figure 3.
Final adapted mesh
(Ra ¼ 105)
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Steady state results for isotherms and streamfunction contours based on the final mesh
are shown in Figure 4(a) and (b). The flow and isothermal patterns compare very well
with results from de Vahl Davis (1983).

Quantitative comparisons are shown in Table I for extreme velocities on the
horizontal mid-plane together with their locations, and Nusselt numbers along the
heated walls with their locations.

Three-dimensional natural convection in a square enclosure is a popular benchmark
case – it is an easy extension from 2D. Early solutions for 3D natural convection in an
enclosure were typically obtained using the 3D equivalent of the vorticity-stream
function form of the equations. One of the earliest simulations was conducted by
Mallinson and de Vahl Davis (1977), followed by efforts from many other researchers
over several decades (Pepper, 1987; Shaw, 1987; Pepper and Hollands, 2000). For
comparison purposes, the cubic enclosure is heated on the right wall and cooled on the
left wall. All other walls are insulated ð20:5L # x # 0:5L; 20:5 # y #
0:5L; 20:5L # z # 0:5LÞ with Ra ¼ 105 and Pr ¼ 0.71.

The initial coarse mesh consisted of 1,000 elements and 1,331 nodes. The
intermediate h-adapted mesh, shown in Figure 5(a), contained 12,634 elements with
11,718 DOFs. The final hp-adapted mesh is shown in Figure 5(b), and consists of 12,634
elements with 29,108 DOFs. As before, the mesh has been automatically refined and
enriched within the boundary layers along the walls of the enclosure.

Steady state results for isotherms and velocity vector planes at y ¼ 20.4, y ¼ 0.2
and z ¼ 0 on the final mesh are shown in Figure 6(a) and (b). Flow and isothermal
patterns compare well with results found in the literature (Pepper, 1987; Shaw, 1987).

Quantitative comparisons for velocities and Nusselt number are shown in Table II.

Figure 4.
Simulation results:

(a) isotherms (0 to 1 with
0.1 as interval); (b)

streamfunctions (29.509,
28.646 to 0 with 0.9607 as

interval) (Ra ¼ 105)
(a) (b)

umax y(x ¼ 0.5) vmax x( y ¼ 0.5) Numax y(x ¼ 0) Numin y(x ¼ 0)

(de Vahl
Davis)

Present (de Vahl
Davis)

Present (de Vahl
Davis)

Present (de Vahl
Davis)

Present

34.73 34.85 68.59 68.67 7.717 7.720 0.729 0.731
0.855 0.864 0.066 0.070 0.081 0.084 1 1

Table I.
Comparison with
benchmark data

(Ra ¼ 105) for 2D natural
convection
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Natural convection in partitioned enclosure
Natural convection within a 2D partitioned enclosure is initially presented, followed by
a 3D case. A partitioned enclosure has a typical configuration where a partial
obstruction extends from a surface, e.g. a printed circuit or a ceiling beam in a room.
Such problems have been of interest to the building and HVAC communities for years
– recent interest has developed due to homeland security issues associated with
partitioned configurations, such as contaminant dispersion within an office complex
(Pepper and Wang, 2005). Most published simulation results for natural convection

Figure 5.
Adapted meshes:
(a) intermediate h-adapted
mesh; (b) final hp-adapted
mesh

P
3

(a) (b)

2
1

Figure 6.
Simulation results for
y ¼ 20.4, y ¼ 0.2 and
z ¼ 0 on the final mesh:
(a) velocity vectors;
(b) isotherms
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Case Ra umax vmax Nuave

3D (Pepper, 1987) 105 41.0 69.8 4.62
Present 3D 105 40.8 69.2 4.58

Table II.
Comparison with
benchmark data for 3D
natural convection
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within a partitioned enclosure have dealt with 2D configurations with few actually
encompassing true 3D effects.

For 2D cases, the left and right walls are maintained at hot and cold, respectively;
the top and bottom walls, along with the partition surfaces, are insulated. In this
simulation, there are two cases with Ra ¼ 104 and 105 and Pr ¼ 0.71. The
computational domain is defined as 0 # x # L; 0 # y # L. The thickness of the
partition is 0.1L. The height to length ratio of the partition is H=L ¼ 0:7 for case 1 and
0.3 for case 2, the partition is located at 0.7L for both cases. The configuration is shown
in Figure 7.

The initial coarse mesh consisted of 372 elements and 427 nodes. The final
hp-adapted meshes are shown in Figure 8(a) and (b). For Ra ¼ 104, the final mesh
consisted of 3,102 elements and 8,045 DOFs. For Ra ¼ 105, the final mesh consisted of

Figure 7.
Problem configuration

0.1L

H

L

L

d

Figure 8.
Final adapted meshes
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3,558 elements and 8,737 DOFs. Notice that the meshes are refined and enriched along
the boundary layers as well as near the partition location. This is due to the
acceleration of flow and heat along boundary layers, and can be attributed to regions of
high-solution gradient.

Steady state simulation results for isotherms and velocity vectors are shown in
Figure 9(a)-(d). Flow and isothermal patterns again compare well with results found in
the literature (Fu and Shieh, 1998). As Ra increases, convective effects become more
enhanced. The flow begins to intrude into the right upper region, as seen in Figure 9(d),
versus less intrusion at lower Ra, as shown in Figure 9(c).

To compare the effects of different partition heights, simulation results for a
partition enclosure with height to length ratio of H=L ¼ 0:3 are shown in Figure 10
(Ra ¼ 104). More details are given in Wang and Pepper (2007). From Figures 9 and 10,
it can be seen that the decrease of the partition height enhances the heat transfer from
the warm wall to the cold wall, with the flow developing a larger recirculation pattern
within the enclosure.

For the 3D case, the top, bottom, front and back walls of the partitioned enclosure
are insulated. The left and right walls are maintained at hot and cold temperatures,
respectively, with Ra ¼ 103. The adiabatic partition baffle (all surfaces of the partition
are adiabatic) protruding from the top is 0.1L in thickness and 0.5L in height.

Figure 9.
Simulation results (a) and
(b) isotherms, (c) and (d)
velocity vectors

(a) Ra = 104 (b) Ra = 105

(c) Ra = 104 (d) Ra = 105
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The problem domain is defined as 2L # x # L; 0 2 0:5L # y # 0:5L;
20:5 # z # 0:5L. The configuration is shown in Figure 11.

The intermediate h-adapted mesh is shown in Figure 12(a) and consisted of 8,928
elements, 9,668 nodes and 9,668 DOFs. The final hp-adapted mesh is shown in
Figure 12(b) and contains 8,928 elements, 40,057 nodes and 124,276 DOFs. Notice that
the mesh is refined and enriched near the partition corners and in the lower left and right
corners due to the acceleration of flow in those regions – and corresponding large errors.

Steady state simulation results for planes at y ¼ 20.25, y ¼ 0.25 and z ¼ 20.25 on
the final mesh are shown in Figure 13.

Figure 10.
Simulation results for

Ra ¼ 104

(a) isotherms (b) velocity vectors

Figure 11.
Partial divided enclosure

Th

Tc

s

H

L

Figure 12.
Adapted meshes:

(a) intermediate mesh;
(b) final mesh

P
3
2
1

(a) (b)
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Flow and isotherm patterns are altered due to the existence of the partition, compared
to patterns typically obtained within enclosures without obstructions or partitions.
Two recirculation zones can be observed. The flow accelerates beneath the partition
with thermal stratification developing along the heated wall side of the enclosure. Such
conditions are commonly found in many room configurations, and in thermally
stratified lakes where a barrier has been stretched across the lake surface to restrict
thermal dispersion (Hamm and Pepper, 1987).

Oden et al. (1995) and Nithiarasu and Zienkiewicz (2000) demonstrated the
effectiveness of hp-adaptivity in computational accuracy and efficiency. More recently
Wang and Pepper (2007) show that the employment of hp-adaptive FEM algorithms
can significantly save computational time versus non-adaptive FEM techniques.

Conclusions
An hp-adaptive FEM algorithm is presented for solving the conservation equations of
momentum and energy for an incompressible fluid, subjected to differentially heated
boundaries. Simulation results are obtained for 2D and 3D natural convection within
partitioned enclosures. Results show refined and enriched elements that develop near
the partition edges and side walls of the enclosure, as expected. The heat transfer
between the heated and cooled side walls is reduced in the presence of a partial
partition. The length of the partition projecting from an upper wall also significantly
affects the temperature stratification and recirculation pattern within the overall
domain. Increased protrusion of the partition into the domain leads to a more localized
distribution of temperature near the base of the partition, inhibiting the dispersion of
temperature throughout the rest of the domain.

An a posteriori error estimator, based on the L2 norm, is used to control the
adaptation process. The use of the L2 norm agrees with results from others in showing
that the procedure is effective for incompressible flow with heat transfer.

The adaptive FEM produces accurate results at reduced computational cost
compared with uniform refined and enriched FEM for the same error criteria. The
application of hp-adaptive FEM algorithms has been demonstrated repeatedly in the
literature to be especially effective for solving a wide range of CFD problems, and
should be especially attractive for turbulence simulation. Efforts are under way to
solve natural convection problems at higher Ra numbers within partitioned enclosures,

Figure 13.
Simulation results for
y ¼ 20.25, y ¼ 0.25 and
z ¼ 20.25 on final mesh:
(a) isotherms; (b) velocity
vectors
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including the incorporation of k 2 1 and LES closures for turbulent flow. Recent
efforts using the hp technique have been shown to be particularly effective for
modeling indoor ventilation and contaminant transport within building interiors.
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